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CHAPTER 1

Motivating Problems of Measure Theory

1. The Problem of Measurement

A basic (and very old) problem in mathematics is to compute the size (length, area, volume) of
geometric objects. Areas of polygons and circles can be computed by elementary methods. More
complicated regions bounded by continuous curves can be attacked with methods from calculus.
But what about more general subsets of Euclidean space? Does it always make sense to talk about
the (hyper-)volume of a subset of Rd? What properties does volume have, and how do we compute
it?

We will consider these general questions as the “problem of measurement” in Euclidean space
and discuss some approaches to a solution.

2. Riemann Integration and Jordan Content

A good first attempt at solving the problem of measurement comes from the Riemann theory of
integration. The basic strategy is to approximate general regions by finite collections of boxes (sets

of the form B =
∏d

i=1[ai, bi]). For such a box B, we declare the volume to be Vol(B) =
∏d

i=1(bi−ai)
and use this to define the volume of more general regions. We will now make this idea rigorous.

Definition 1.1: Darboux Integration

Let B =
∏d

i=1[ai, bi] be a box in Rd, and let f : B → R be a bounded function.

• A Darboux partition of B is a family of finite sequences (xi,j)1≤i≤d,0≤j≤ni
such that

ai = xi,0 < xi,1 < · · · < xi,ni = bi for each i ∈ {1, . . . , d}.

Figure 1.1. A Darboux partition in dimension d = 2 with
n1 = 4 and n2 = 6.

• Given a Darboux partition P = (xi,j)1≤i≤d,0≤j≤ni
ofB, the upper and lower Darboux

sums of f over B are given by

UB(f, P ) =
∑

j∈
∏d

i=1{1,...,ni}

sup
x∈Bj

f(x) ·Vol(Bj)
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and

LB(f, P ) =
∑

j∈
∏d

i=1{1,...,ni}

inf
x∈Bj

f(x) ·Vol(Bj),

where Bj is the box
∏d

i=1[xi,ji−1, xi,ji ], and Vol(Bj) =
∏d

i=1(xi,ji − xi,ji−1) is the
volume of Bj.

y = f(x)

x

y

y = f(x)

x

y

Figure 1.2. Upper (red) and lower (blue) Darboux sums of
a function f over an interval (d = 1).

• The upper and lower Darboux integral of f over B are

UB(f) = inf{UB(f, P ) : P is a Darboux partition of B}

and

LB(f) = sup{LB(f, P ) : P is a Darboux partition of B}.
• The function f is Darboux integrable over B if UB(f) = LB(f), and their common
value is called the Darboux integral of f over B and is denoted by

∫
B f(x) dx.

Proposition 1.2

A function f is Darboux integrable if and only if it is Riemann integrable. Moreover, the
value of the Darboux integral and the Riemann integral (for a Riemann–Darboux integrable
function) are the same.

Definition 1.3

A bounded set E ⊆ Rd is a Jordan measurable set if 1E is Riemann–Darboux integrable
over a box containing E. The Jordan content of a Jordan measurable set E is the value
J(E) =

∫
B 1E(x) dx, where B is any box containing E.

Jordan measurable sets include basic geometric objects such as polyhedra, conic sections, regions
bounded by finitely many smooth curves/surfaces, etc.

Definition 1.4

A set S ⊆ Rd is a simple set if it is a finite union of boxes S =
⋃k

j=1Bj .
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If the boxes B1, . . . , Bk are disjoint, then the volume of the simple set S =
⋃k

j=1Bj is Vol(S) =∑k
j=1Vol(Bj). If some of the boxes intersect, then the volume of S =

⋃k
j=1Bj can be computed

using inclusion-exclusion:

Vol(S) =
k∑

j=1

Vol(Bj)−
∑

1≤j1<j2≤k

Vol(Bj1 ∩Bj2) +
∑

1≤j1<j2<j3≤k

Vol(Bj1 ∩Bj2 ∩Bj3)− . . .

This expression is well-defined, since the intersection of two boxes is again a box. A Jordan
measurable set is a set that is “well-approximated” by simple sets, as we will make precise now.

Definition 1.5

For a bounded set E ⊆ Rd, define the inner and outer Jordan content by

J∗(E) = sup {Vol(S) : S ⊆ E is a simple set} .

and

J∗(E) = inf {Vol(S) : S ⊇ E is a simple set} .

Figure 1.3. Simple sets approximating the inner (red) and outer Jordan
content (blue) of a region in dimension d = 2. With the red boxes removed
from the blue, we get a simple set covering the boundary (in green).

Theorem 1.6

Let E ⊆ Rd be a bounded set. The following are equivalent:

(i) E is Jordan measurable;
(ii) J∗(E) = J∗(E) (in which case J(E) is equal to this same value);
(iii) J∗(∂E) = 0.

Proof. We will prove the d = 1 case. The multidimensional case is similar but more no-
tationally cumbersome, so we omit it to avoid additional technical details that would largely
obscure the main ideas.

(i) ⇐⇒ (ii). To establish this equivalence, it suffices to show

UB(1E) = J∗(E) and LB(1E) = J∗(E)

for any box (interval) B ⊇ E. Let us prove UB(1E) = J∗(E).
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Claim 1. UB(1E) ≤ J∗(E).

Let ε > 0. Then from the definition of the outer Jordan content, there exists a simple
set S ⊆ R such that E ⊆ S and Vol(S) < J∗(E) + ε. By assumption, B is an interval
containing E, so S ∩ B is also a simple set containing E, and Vol(S ∩ B) ≤ Vol(S) <
J∗(E)+ε. We may therefore assume without loss of generality that S ⊆ B. WriteB = [a, b]
and S = [a1, b1] ⊔ [a2, b2] ⊔ · · · ⊔ [an, bn] with a ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn ≤ b.
We define a Darboux partitiona P of [a, b] by P = (xi)

2n+1
i=0 with x0 = a, x1 = a1, x2 = b1,

. . . , x2n−1 = an, x2n = bn, x2n+1 = b. Then since E ⊆ S, we have

UB(1E , P ) =

2n+1∑
i=1

sup
xi−1≤x≤xi

1E(x) · (xi − xi−1)

≤ 0 · (a1 − a) + 1 · (b1 − a1) + 0 · (a2 − b1) + · · ·+ 1 · (bn − an) + 0 · (b− bn)

= Vol(S).

Hence, UB(1E) ≤ UB(1E , P ) ≤ Vol(S) < J∗(E) + ε. This proves the claim.

aStrictly speaking, this may fail to be a Darboux partition, since some of the points are allowed to coincide.
However, the value we compute for UB(1E , P ) will be the correct value for the partition where we remove
repetitions of the same point.

Claim 2. J∗(E) ≤ UB(1E).

Let ε > 0. Write B = [a, b]. Then there exists a Darboux partition a = x0 < x1 < · · · <
xn = b such that UB(1E , P ) < UB(1E) + ε. Let Mi = supxi−1≤x≤xi

1E(x) ∈ {0, 1}, and
note that, by definition, UB(1E , P ) =

∑n
i=1Mi(xi − xi−1). Let I ⊆ {1, . . . , n} be the set

I = {1 ≤ i ≤ n : Mi = 1}, and let S =
⋃

i∈I [xi−1, xi]. Then S is a simple set with length
Vol(S) =

∑
i∈I(xi − xi−1) = UB(1E , P ). Moreover, E ⊆ S, since S is the union of all

intervals that have nonempty intersection with E. Thus, J∗(E) ≤ Vol(S) = UB(1E , P ) <
UB(1E) + ε.

The identity LB(1E) = J∗(E) is proved similarly.

(ii) ⇐⇒ (iii). It suffices to prove J∗(∂E) = J∗(E)− J∗(E). (See Figure 1.3.)

Claim 3. J∗(∂E) ≤ J∗(E)− J∗(E).

Let ε > 0. Let S1 be a simple set such that E ⊆ S1 and Vol(S1) < J∗(E) + ε
2 . Since

S1 is closed, we have E ⊆ S1. Let S2 be a simple set with S2 ⊆ E such that Vol(S2) >
J∗(E) − ε

2 . Note that int(S2) ⊆ int(E). Therefore, S = S1 \ int(S2) is a simple set and

∂E = E \ int(E) ⊆ S, so J∗(∂E) ≤ Vol(S) = Vol(S2)−Vol(S1) < J∗(E)− J∗(E)+ ε. But
ε was arbitrary, so we conclude J∗(∂E) ≤ J∗(E)− J∗(E).
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Claim 4. J∗(E)− J∗(E) ≤ J∗(∂E).

Let ε > 0, and let S ⊇ ∂E be a simple set with Vol(S) < J∗(∂E)+ ε
2 . Write S =

⊔n
i=1[ai, bi]

with a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn. Let [a, b] ⊆ R such that E ⊆ [a, b] and a < a1
and b < bn. For notational convenience, let b0 = a and an+1 = b. Let I ⊆ {0, . . . , n}
be the collection of indices i such that (bi, ai+1) ∩ E ̸= ∅. For each i ∈ I, we claim that
(bi, ai+1) ⊆ E. If not, then (bi, ai+1) contains a boundary point of E, but ∂E ⊆ S, so this
is a contradiction. Thus, S′ =

⋃
i∈I [bi, ai+1] is a simple set with int(S′) ⊆ E. Shrinking

slightly each interval in S′, we obtain a simple set

S′′ =
⋃
i∈I

[
bi +

ε

4(n+ 1)
, ai+1 −

ε

4(n+ 1)

]
such that S′′ ⊆ E. Moreover, Vol(S′′) ≥ Vol(S′) − ε

2(n+1) |I| ≥ Vol(S′) − ε
2 . Noting that

S ∪ S′ is a simple set containing E, we arrive at the inequality

J∗(E)− J∗(E) ≤ Vol(S ∪ S′)−Vol(S′′) = Vol(S) + Vol(S′)−Vol(S′′) < J∗(∂E) + ε.

This completes the proof of Theorem 1.6. □

Example 1.7

The sets Q ∩ [0, 1] and [0, 1] \Q are not Jordan measurable (see Exercise 1.1).

In addition to the above example, there are many other “nice” sets that are not Jordan mea-
surable. There are, for instance, bounded open sets in R that are not Jordan measurable. We will
work out one such example in detail.

Example 1.8

The complement U of the fat Cantor set (also known as the Smith–Volterra–Cantor set)
K ⊆ [0, 1] is Jordan non-measurable. We construct K iteratively, starting from [0, 1], by
removing intervals of length 4−n at step n. In other words, at step n, we remove an interval
of length 4−n around each rational point with denominator 2n.

Figure 1.4. Iterative construction of the fat Cantor set.

Let

U =
∞⋃
n=0

2n⋃
j=1

(
2j + 1

2n+1
− 1

2 · 4n+1
,
2j + 1

2n+1
+

1

2 · 4n+1

)
.

Then K = [0, 1] \ U . The inner Jordan content of U is

J∗(U) =
∞∑
n=0

2n∑
j=1

Len

(
2j + 1

2n+1
− 1

2 · 4n+1
,
2j + 1

2n+1
+

1

2 · 4n+1

)
=

∞∑
n=0

2n· 1

4n+1
=

1

4

∞∑
n=0

2−n =
1

2
.

5



However, U = [0, 1] (since U contains every rational number whose denominator is a power
of 2), so the outer Jordan content of U is J∗(U) = J∗([0, 1]) = 1.

3. Limits of Integrable Functions

You may recall from the theory of Riemann integration that uniform limits of Riemann inte-
grable functions are Riemann integrable, and one may in this case interchange the order of taking
limits and computing the integral. More precisely:

Theorem 1.9

Let B be a box in Rd. Let (fn)n∈N be a sequence of Riemann integrable functions on B, and
suppose fn converges uniformly to a function f : B → R. Then f is Riemann integrable,
and ∫

B
f(x) dx = lim

n→∞

∫
B
fn(x) dx.

One of the deficiencies of the Riemann–Darboux–Jordan approach to integration and measure-
ment is that pointwise (non-uniform) limits do not share this property.

Example 1.10

Enumerate the set Q ∩ [0, 1] = {q1, q2, . . . }. Let fn : [0, 1] → [0, 1] be the function

fn(x) =

{
1, if x ∈ {q1, . . . , qn}
0, otherwise.

Then fn is Riemann integrable and fn → 1Q∩[0,1] pointwise, but 1Q∩[0,1] is not Riemann
integrable.

Since analysis so often deals with limits, it is desirable to develop a theory of integration
that accommodates pointwise limits. The Lebesgue measure and Lebesgue integral resolve this
shortcoming.

4. The Solution of Lebesgue

The Jordan non-measurable set in Example 1.8 appears to have a sensible notion of “length.”
Indeed, the complement U , being a disjoint union of intervals, could be reasonably assigned as
a “length” the sum of the lengths of the (countably many) intervals of which it is made. This
produces a value of 1

2 for the length of U , and so we should take K to also have length 1
2 , since

K ⊔ U = [0, 1] is an interval of length 1. The feature that U is a disjoint union of intervals turns
out to not be any special feature of U at all but instead a general feature of open sets in R.

Proposition 1.11

Let U ⊆ R be an open set. Then U can be expressed as a countable disjoint union of open
intervals.

Proof. Exercise 1.2. □

By Proposition 1.11, it seems reasonable to define the length of an open set U ⊆ R as follows.
Write U = (a1, b1) ⊔ (a2, b2) ⊔ . . . as a disjoint union of open intervals, and define its length as
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(b1−a1)+(b2−a2)+ . . . . Then open sets may play the role that simple sets played in the definition
of the Jordan content, and this leads to the Lebesgue measure.

Remark. In higher dimensions, Proposition 1.11 needs to be modified, but one can still
reasonably talk about the d-dimensional volume of open sets in Rd. See Exercises 1.3 and 1.6.

Definition 1.12

Let E ⊆ Rd.

• The outer Lebesgue measure of E is the quantity

λ∗(E) = inf {Vol(U) : U ⊇ E is open}

= inf


∞∑
j=1

Vol(Bj) : B1, B2, . . . are boxes, and E ⊆
∞⋃
j=1

Bj

 .

• The set E is Lebesgue measurable (with Lebesgue measure λ(E) = λ∗(E)) if for
every ε > 0, there exists an open set U ⊆ Rd such that E ⊆ U and λ∗(U \ E) < ε.

Proposition 1.13

If E ⊆ Rd is Jordan measurable, then E is Lebesgue measurable and J(E) = λ(E).

The family of Lebesgue measurable sets is much larger than the family of Jordan measurable
sets. Among the several nice properties of the Lebesgue measure (and abstract measures) that we
will see later in the course are:

Proposition 1.14

(1) If (En)n∈N are Lebesgue measurable sets, then
⋃∞

n=1En and
⋂∞

n=1En are Lebesgue
measurable.

(2) If (En)n∈N are pairwise disjoint and Lebesgue measurable, then λ (
⊔∞

n=1En) =∑∞
n=1 λ(En).

(3) If E1 ⊆ E2 ⊆ · · · ⊆ Rd are Lebesgue measurable sets, then λ (
⋃∞

n=1En) = limn→∞ λ(En).

(4) If E1 ⊇ E2 ⊇ . . . are Lebesgue measurable subsets of Rd and λ(E1) < ∞, then
λ (
⋂∞

n=1En) = limn→∞ λ(En).

5. Applications of Abstract Measure Theory

The mathematical language and tools encompassed in measure theory play a foundational role
in many other areas of mathematics. A highly abbreviated sampling follows.

Probability Theory. Measure theory provides the axiomatic foundations of probability theory,
providing rigorous notions of random variables and probabilities of events. Important limit laws
(the law of large numbers and central limit theorem, for example) are phrased mathematically using
measure-theoretic notions of convergence.

Fourier Analysis. Periodic (say, continuous or Riemann-integrable) functions on the real line

have corresponding Fourier series representations f(x) ∼
∑

n∈Z f̂(n)e
2πinx. The functions e2πinx

are orthonormal, and Parseval’s identity gives
∑

n∈Z |f̂(n)|2 =
∫ 1
0 |f(x)|2 dx. Given a sequence

(an)n∈N, one may ask whether
∑

n∈Z ane
2πinx is the Fourier expansion of some function f , and if
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so, what properties does f have? Another natural question is whether the series
∑

n∈Z f̂(n)e
2πinx

actually converges to the function f , and if so, in which sense? Both of these questions are properly
answered in a measure-theoretic framework. If one is interested in decomposing functions defined
on other groups (for instance, on compact abelian groups) into their Fourier series, then one also
needs to develop a method of integrating functions on groups in order to compute Fourier coeffi-
cients and make sense of Parseval’s identity.

Functional Analysis and Operator Theory. When one studies familiar concepts from linear
algebra in infinite-dimensional spaces, measures become unavoidable for many tasks. For example,
versions of the spectral theorem (generalizing the representation of suitable matrices in terms of
their eigenvalues and eigenvectors) for operators on infinite-dimensional spaces require the abstract
notion of a measure.

Ergodic Theory. Ergodic theory was developed to study the long-term statistical behavior of dy-
namical (time-dependent) systems, providing a framework to resolve important problems in physics
related to the “ergodic hypothesis” in thermodynamics and the “stability” of the solar system. It
turns out that the appropriate mathematical formalism for understanding these problems comes
from abstract measure theory.

Fractal Geometry. Self-similar geometric objects such as the Koch snowflake, Sierpiński carpet,
and the middle-thirds Cantor set (see Figure 1.5) can be meaningfully assigned a notion of “dimen-
sion” that can take a non-integer value. How does one determine the dimension of a fractal object?
There are several different approaches to dimension, but one of the most popular is the Hausdorff
dimension, which relies on a family of measures that interpolate between the integer-dimensional
Lebesgue measures.

Figure 1.5. Fractal shapes: the Koch snowflake (left) of Hausdorff dimen-

sion log 4
log 3 ≈ 1.26, Sierpiński carpet (middle) of dimension log 8

log 3 ≈ 1.89, and

middle-thirds Cantor set (right) of dimension log 2
log 3 ≈ 0.63.

Additional Reading

This introductory chapter is heavily influenced by the book of Tao [6] on measure theory. Many
of the results in this chapter are discussed in greater detail in [6, Section 1.1].

Exercises

1.1 Show that J∗(Q ∩ [0, 1]) = J∗([0, 1] \Q) = 1, and J∗(Q ∩ [0, 1]) = J∗([0, 1] \Q) = 0.

8



1.2 Let U ⊆ R be an open set. Show that U can be written as a disjoint union of countably many
open intervals.

1.3 Let U = {(x, y) : x2 + y2 < 1} ⊆ R2 be the open unit disk. Show that U cannot be expressed
as a disjoint union of countably many open boxes.

1.4 Give an example to show that the statement

λ∗(E) = sup
U⊆E,U open

λ∗(U).

is false.

1.5 (Area Interpretation of the Riemann Integral) Let [a, b] be an interval and f : [a, b] → [0,∞)
a bounded function. Show that f is Riemann integrable if and only if the set

E+ = {(x, t) : a ≤ x ≤ b, 0 ≤ t ≤ f(x)}
is a Jordan measurable set in R2, in which case∫ b

a
f(x) dx = J(E+).

1.6 Let U ⊆ Rd be an open set. Show that U can be written as a disjoint union of countably many

half-open boxes (i.e., sets of the form B =
∏d

i=1[ai, bi)).
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CHAPTER 2

Measure Spaces

1. σ-Algebras

Before defining measures, we must determine which subsets of a given set X we would like to
be able to measure. The full set X should be measurable, and we should allow ourselves to perform
the basic set-theoretic operations (complements, unions, and intersections). Allowing finite unions
and intersections produces an algebra of sets. Algebras are a very useful notion, but (as with the
Jordan content discussed in the previous chapter) they are insufficient for appropriately handling
limits. We will therefore upgrade from algebras to σ-algebras:

Definition 2.1

Let X be a set. A σ-algebra on X is a family B ⊆ P(X) of subsets of X with the following
properties:

• X ∈ B;
• If B ∈ B, then X \B ∈ B;
• If (Bn)n∈N is a countable family of elements of B, then

⋃
n∈NBn ∈ B.

Remark. In the definition of a σ-algebra, we have made no explicit mention of intersec-
tions. However, by De Morgan’s laws, we can also generate the countable intersection of sets:⋂

n∈NBn = X \
(⋃

n∈N(X \Bn)
)
.

Example 2.2

Some examples of σ-algebras include the following:

• For any set X, the power set P(X) is a σ-algebra, as is the pair {∅, X}.
• The family B = {B ⊆ R : either B or R \ B is countable} of countable and co-
countable subsets of R is a σ-algebra.

• Unions of unit-length intervals in R form a σ-algebra B =
{⋃

n∈S [n, n+ 1) : S ⊆ Z
}
.

Proposition 2.3

Suppose (Bi)i∈I is a family of σ-algebras on X. Then
⋂

i∈I Bi is a σ-algebra.

Proof. Let B =
⋂

i∈I Bi.
For every i ∈ I, we have X ∈ Bi, so X ∈ B.
Suppose B ∈ B. Then B ∈ Bi for every i ∈ I, so X \ B ∈ Bi for every i ∈ I. Hence,

X \B ∈ B.
Let (Bn)n∈N be a countable family of sets in B. For each i ∈ I, the sets (Bn)n∈N belong to

Bi, so
⋃

n∈NBn ∈ Bi. Therefore,
⋃

n∈NBn ∈ B. □
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Definition 2.4

The σ-algebra generated by a family S ⊆ P(X) is the smallest σ-algebra containing S,
denoted by σ(S).

Remark. Note that σ(S) is well-defined by Proposition 2.3:

σ(S) =
⋂

{B : B is a σ-algebra on X,S ⊆ B} .

In topological spaces (such as the real line), we will often consider the σ-algebra generated by
the topology.

Definition 2.5

Let (X, τ) be a topological space. The Borel σ-algebra is the σ-algebra generated by the
open subsets of X, i.e. Borel(X) = σ(τ).

Borel sets can be placed in a hierarchy in terms of their level of complexity. At the simplest
level are the open (G) and closed (F ) sets. Next come countable intersections of open sets (Gδ

sets) and countable unions of closed sets (Fσ sets) and so on.

Σ0
1 = G Π0

2 = Gδ Σ0
3 = Gδσ Π0

4 = Gδσδ . . . Σ0
ω . . .

Π0
1 = F Σ0

2 = Fσ Π0
3 = Fσδ Σ0

4 = Fσδσ . . . Π0
ω . . .

⋂
c

⋃
c

⋂
c

⋃
c

⋃
c

⋂

⋃ ⋂ ⋃ ⋂ ⋂ ⋃

Figure 2.1. The Borel hierarchy for subsets of a topological space.

The placement of a (Borel) set within the Borel hierarchy is a useful notion of “complexity”
for sets. Intuitively speaking, if a set is lower down in the Borel hierarchy, then it is in some sense
easier to define than a set higher up the hierarchy. Determining where sets occur in the Borel
hierarchy (or if they are Borel at all) is a common theme in an area of mathematical logic known as
descriptive set theory. We will largely not concern ourselves with such problems in this course, but
some suggested additional reading appears at the end of this chapter for those who are interested.

In our development of the abstract theory of measures (where we may not even have a topology
to work with), our object of study will be arbitrary sets X equipped with a σ-algebra.

Definition 2.6

A measurable space is a pair (X,B), where X is a set and B is a σ-algebra on X. Elements
of the σ-algebra B are called measurable sets.

2. Measurable Functions

Recall that a function f : X → Y from one topological space to another is continuous if the
preimage of every open set in Y is open in X. Measurable functions are defined analogously, but
with “open” replaced by “measurable.”
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Definition 2.7

Let (X,B) and (Y, C) be measurable spaces. A function f : X → Y is measurable if for every
C ∈ C, one has f−1(C) ∈ B.

Some basic properties of measurable functions that will be used frequently are as follows:

Proposition 2.8

(1) Let (X,B), (Y, C), and (Z,D) be measurable spaces. Let f : X → Y and g : Y → Z be
measurable functions. Then g ◦ f : X → Z is measurable.

(2) Let (X,B) and (Y, C) be measurable spaces, and let f : X → Y . Suppose S ⊆ P(Y ) is a
family of sets such that σ(S) = C. If f−1(S) ∈ B for every S ∈ S, then f is a measurable
function.

(3) Suppose X and Y are topological spaces and B = Borel(X) and C = Borel(Y ) are the
Borel σ-algebras on X and Y respectively. Then every continuous function f : X → Y
is measurable.

Proof. (1) Let D ∈ D. Since g is measurable, we have C = g−1(D) ∈ C. Then since f is
measurable, B = f−1(C) ∈ B. But B = f−1(g−1(D)) = (g ◦ f)−1(D), so g ◦ f is measurable.

(2) Let F = {E ⊆ Y : f−1(E) ∈ B}. We claim that F is a σ-algebra. Then since S ⊆ F ,
we conclude that C = σ(S) ⊆ F , so f is measurable. Let us now prove the claim:

• f−1(Y ) = X ∈ B, so Y ∈ F .
• Suppose E ∈ F . Then f−1(Y \ E) = X \ f−1(E)︸ ︷︷ ︸

∈B

∈ B, so Y \ E ∈ F .

• Suppose E1, E2, · · · ∈ F , and let E =
⋃

n∈NEn. Then

f−1(E) =
⋃
n∈N

f−1(En)︸ ︷︷ ︸
∈B

∈ B,

so E ∈ F .

This proves that F is a σ-algebra on Y .

(3) follows from (1) by taking S to be the collection of open sets in Y . □

3. The Extended Real Numbers and Extended Real-Valued Functions

One obtains an important class of measurable functions when one considers functions defined
on a measurable space taking real values. For many applications and in order to account more
fully for limits of functions, it is often convenient to work with the slightly more general concept
of extended real-valued functions.

Definition 2.9

The extended real numbers are the set [−∞,∞] = R∪{∞,−∞} with the following topological
and algebraic properties:

• The topology on [−∞,∞] is generated by open intervals (a, b) with a, b ∈ R and
sets of the form (a,∞] = (a,∞)∪{∞} and [−∞, b) = (−∞, b)∪{−∞} for a, b ∈ R.
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• Addition is extended as a commutative operation with ∞+ x = ∞ and −∞+ x =
−∞ for real numbers x ∈ R. For addition of two infinite quantities, we define
∞+∞ = ∞ and −∞+ (−∞) = −∞. However, −∞+∞ is undefined.

• Multiplication is also extended as a commutative operation with the properties

x ∈ (0,∞) =⇒ ∞ · x = ∞ and −∞ · x = −∞;

x ∈ (−∞, 0) =⇒ ∞ · x = −∞ and −∞ · x = ∞.

By convention, we define ∞ · 0 = −∞ · 0 = 0. Multiplication of infinities is defined
by ∞ ·∞ = (−∞) · (−∞) = ∞, and −∞ ·∞ = −∞.

The topology we have defined on [−∞,∞] is the two-point compactification of R. You will check
in the exercises (Exercise 2.1) that [−∞,∞] is indeed a compact space (that is homeomorphic to a
closed interval, say [0, 1]). The algebraic operations on [−∞,∞] are all as one would expect, with
one exception: ∞ · 0 is often considered as an “indeterminate form”, but here we have given it a
definite value of 0. The reason for this convention is the following proposition, which you will also
prove in the exercises:

Proposition 2.10

Let (xn)n∈N be a sequence in [−∞,∞], and let c ∈ R. If (xn)n∈N converges to an extended
real number, then the sequence (cxn)n∈N also converges, and

lim
n→∞

(cxn) = c · lim
n→∞

xn. (2.1)

Proof. Exercise 2.2. □

In order to have the desirable property (2.1), one has no choice but to define ∞ · 0 = 0: by
taking the sequence xn = n, we have

0 · ∞ = 0 · lim
n→∞

n = lim
n→∞

(0 · n) = 0.

Warning: Property (2.1) does not hold for c ∈ {∞,−∞}, as can be seen by taking a sequence
(xn)n∈N that converges to 0.

We say that an extended real-valued function f : X → [−∞,∞] defined on a measurable
space (X,B) is B-measurable (or simply measurable) if it is measurable as a function between the
measurable spaces (X,B) and ([−∞,∞],Borel([−∞,∞])). Since we will always take the same σ-
algebra on [−∞,∞], we omit explicit reference to the Borel σ-algebra when discussing measurable
extended real-valued functions.

Proposition 2.11

Let (X,B) be a measurable space.

(1) Let f : X → [−∞,∞]. The following are equivalent:
(a) f is measurable;
(b) for every c ∈ R, f−1((c,∞]) ∈ B;
(c) for every c ∈ R, f−1([c,∞]) ∈ B;
(d) for every c ∈ R, f−1([−∞, c)) ∈ B;
(e) for every c ∈ R, f−1([−∞, c]) ∈ B.
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(2) Suppose (fn)n∈N is a sequence of measurable functions fromX to [−∞,∞]. The following
functions are also measurable:
(a) supn∈N fn;
(b) infn∈N fn;
(c) lim supn→∞ fn;
(d) lim infn→∞ fn.

(3) Suppose f, g : X → R are measurable functions. Then f + g and f · g are measurable.

Notation. For convenience, we will often write sets of the form f−1((c,∞]) as {f > c} and
similarly for {f ≥ c}, {f < c}, and {f ≤ c}.

Proof of Proposition 2.11. (1) By Proposition 2.8(2), it suffices to check that each of the
relevant collections of intervals generates the Borel σ-algebra on [−∞,∞]. Let us show that
the collection of intervals (c,∞] for c ∈ R generates the Borel σ-algebra. All of the other proofs
are similar, so we omit them.

Let S = {(c,∞] : c ∈ R}. Note that every element of S is open in [−∞,∞], so σ(S) ⊆
Borel([−∞,∞]). On the other hand, we can write (a, b] = (a,∞] \ (b,∞] for a, b ∈ R, a < b.
Every open set in R is a countable (disjoint) union of such intervals, so every open subset of R
is contained in σ(S). We obtain the additional open sets in [−∞,∞] from the rays (c,∞] ∈ S
and

[−∞, c) =
⋂
n∈N

[
−∞, c+

1

n

]
=
⋂
n∈N

(
[−∞,∞] \

(
c+

1

n
,∞
])

∈ σ(S).

Thus, Borel([−∞,∞]) ⊆ σ(S).

(2) We will use (1).
(a) Let f = supn∈N fn. Note that {f > c} =

⋃
n∈N{fn > c}. Each of the sets {fn > c}

belongs to B, so {f > c} ∈ B.
(b) Similarly to (a), letting f = infn∈N fn, we may express {f < c} =

⋃
n∈N {fn < c}︸ ︷︷ ︸

∈B

∈ B.

(c) Recall that lim supn→∞ fn = infk∈N supn≥k fn, so measurability of lim supn→∞ fn fol-
lows from (a) and (b).

(d) Similar to (c): lim infn→∞ fn = supk∈N infn≥k fn.

(3) Let A : R2 → R and M : R2 → R be the maps A(x, y) = x + y and M(x, y) = xy.
Both of the maps A and M are continuous and therefore (Borel) measurable. Moreover,
(f+g)(x) = A(f(x), g(x)) and (f ·g)(x) = M(f(x), g(x)). Since the composition of measurable
maps is measurable (see Proposition 2.8(1)), it suffices to prove h : x 7→ (f(x), g(x)) is a
measurable function from X to R2. By Proposition 2.8(2), we only need to check preimages of
sets generating the Borel σ-algebra on R2. For convenience, we will take the boxes [a, b)× [c, d)
(the first homework problem was to show that every open set in R2 is a countable (disjoint)
union of such boxes, so they generate the Borel σ-algebra). Observe that

h−1([a, b)× [c, d)) = f−1([a, b)) ∩ g−1([c, d)) ∈ B,
since f and g are measurable, so h is indeed a measurable function. □
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Example 2.12

Let (X,B) be a measurable space and E ⊆ X. The function 1E is measurable if and only if
E ∈ B.

4. Measures

We are now prepared to define measures on abstract measurable spaces.

Definition 2.13

Let (X,B) be a measurable space. A measure on (X,B) is a function µ : B → [0,∞] such
that

• µ(∅) = 0;
• countable additivity: for any sequence (En)n∈N of pairwise disjoint elements of
B, one has µ

(⊔
n∈NEn

)
=
∑

n∈N µ(En).

The triple (X,B, µ) is called a measure space.

Nontrivial examples of measures take some effort to construct, and we will spend significant
portions of the course discussing different methods for constructing interesting measures. However,
there are a few immediate examples that do not require complicated constructions.

Example 2.14

Examples of measures include:

• For any set X, the counting measure is a measure defined on the σ-algebra P(X)
by µ(E) = |E| if E is a finite set and µ(E) = ∞ if E is an infinite set.

• Given a point x ∈ X, the Dirac measure defined on P(X) is the measure δx(E) = 1
if x ∈ E and δx(E) = 0 if x /∈ E.

We will use the following basic properties of measures frequently throughout this course:

Proposition 2.15

Let (X,B, µ) be a measure space.

(1) monotonicity: For any A,B ∈ B, if A ⊆ B, then µ(A) ≤ µ(B).
(2) countable sub-additivity: For any sequence (En)n∈N in B,

µ

(⋃
n∈N

En

)
≤
∑
n∈N

µ(En).

(3) continuity from below: If E1 ⊆ E2 ⊆ · · · ∈ B, then

µ

(⋃
n∈N

En

)
= lim

n→∞
µ(En).

(4) continuity from above: If E1 ⊇ E2 ⊇ · · · ∈ B and µ(E1) < ∞, then

µ

(⋂
n∈N

En

)
= lim

n→∞
µ(En).
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Proof. (1) Write B = A ⊔ (B \ A). Then µ(B) = µ(A) + µ(B \ A) ≥ µ(A), since µ takes
nonnegative values.

(2) Define a new sequence of sets E′
n by E′

1 = E1 and E′
n = En \

⋃n−1
j=1 Ej for n ≥ 2.

Then the sets (E′
n)n∈N are pairwise disjoint and satisfy E′

n ⊆ En and
⊔

n∈NE′
n =

⋃
n∈NEn.

Therefore,

µ

(⋃
n∈N

En

)
= µ

(⊔
n∈N

E′
n

)
=
∑
n∈N

µ(E′
n) ≤

∑
n∈N

µ(En),

where in the last step we have applied monotonicity of µ (property (1)).

(3) Let E′
1 = E1 and E′

n = En \ En−1 for n ≥ 2. For convenience, we will set E0 = ∅ so
that we also have E′

1 = E1 \ E0. Then

µ

(⋃
n∈N

En

)
= µ

(⊔
n∈N

E′
n

)
=
∑
n∈N

µ(E′
n)

(∗)
=
∑
n∈N

(µ(En)− µ(En−1))
(∗∗)
= lim

n→∞
µ(En).

The step (∗) uses additivity of µ, and (∗∗) comes from the telescoping of the sum.

(4) Define a new sequence An = E1 \ En. Then ∅ = A1 ⊆ A2 ⊆ . . . , so

µ

(⋃
n∈N

An

)
= lim

n→∞
µ(An)

by (3). But
⋃

n∈NAn = E1 \
⋂

n∈NEn, so

µ(E1)− µ

(⋂
n∈N

En

)
= µ

(⋃
n∈N

An

)
= lim

n→∞
µ(An) = µ(E1)− lim

n→∞
µ(En),

whence we deduce that (4) holds, since µ(E1) < ∞. □

Example 2.16

Property (4) may fail if µ(E1) = ∞. Let X = N, B = P(N), and let µ be the counting
measure. Let En = {m ∈ N : m ≥ n}. Then µ(En) = ∞ for every n ∈ N, but

⋂
n∈NEn = ∅,

so

µ

(⋂
n∈N

En

)
= 0 ̸= ∞ = lim

n→∞
µ(En).

Additional Reading

The content of this chapter is common to every text on abstract measure theory, though the
order of presentation differs. We have elected to follow more or less the order of presentation from
Rudin’s Real and Complex Analysis [4, Chapter 1]. Alternative presentations can be found in [1,
Sections 1.2, 1.3, and 2.1], and [6, Section 1.4].

Introductory texts on measure theory tend not to give much treatment to the Borel hierarchy
or other topics in descriptive set theory (and we will also not expand on such topics within these
lecture notes). Those interested in learning more can take a look at the book of Kechris [2] and/or
the lecture notes of Tserunyan [7], which draw quite heavily on [2].
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Exercises

2.1 Prove that the extended real line [−∞,∞] is homeomorphic to the closed unit interval [0, 1].

2.2 Prove Proposition 2.10.

2.3 Let X,Y be sets and f : X → Y any function.

(a) Prove that if C ⊆ P(Y ) is a σ-algebra on Y , then B = {f−1(C) : C ∈ C} is a σ-algebra on X.
(b) Prove that for any family of sets S ⊆ P(Y ), we have σ(f−1(S)) = f−1(σ(S)).
2.4 Let (X,B, µ) be a finite measure space, and let A ⊆ P(X) be an algebra on X such that
σ(A) = B. Show that for every B ∈ B and every ε > 0, there exists A ∈ A such that µ(A△B) < ε.

2.5 Let X be a set. A family of subsets S ⊆ P(X) is a semi-algebra if

• ∅, X ∈ S;
• if A,B ∈ S, then A ∩B ∈ S;
• if A,B ∈ S, then A \B =

⊔n
i=1Ci for some C1, . . . , Cn ∈ S.

Show that if S is a semi-algebra, then the algebra generated by S is

A(S) =

{
n⋃

i=1

Ai : n ∈ N, Ai ∈ S

}
.

Can
⋃

be replaced by
⊔
?

2.6 Suppose B is an infinite σ-algebra (on an infinite set X).

(a) Show that B contains an infinite sequence (En)n∈N of pairwise disjoint sets.
(b) Deduce that B has at least the cardinality of the continuum.

2.7 Prove that the following sets are Borel sets in R:
(a) The set of points of continuity

Cf = {x ∈ R : f is continuous at x}
for an arbitrary function f : R → R.

(b) The set of points of convergence

Conv = {x ∈ R : lim
n→∞

fn(x) exists}

for an arbitrary sequence of continuous functions fn : R → R.
2.8 Let (X,B) be a measurable space, and let µ : B → [0,∞]. Prove that µ is a measure if and
only if it satisfies the following three properties:

• µ(∅) = 0;
• finite additivity: for any disjoint sets A,B ∈ B,

µ(A ⊔B) = µ(A) + µ(B);

• continuity from below: if E1 ⊆ E2 ⊆ · · · ∈ B, then

µ

(⋃
n∈N

En

)
= lim

n→∞
µ(En).
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CHAPTER 3

Integration Against a Measure

Our next task is to develop an integration theory for integrating measurable functions on
abstract measure spaces. In the Riemann–Darboux approach to integration, we approximate a
function f : [a, b] → [0,∞) by step functions, for which we can easily define the integral. For the
Lebesgue theory of integration, we will use a similar idea but with a more general class of functions:
so-called simple functions.

1. Integration of Simple Functions

Definition 3.1

Let (X,B) be a measurable space. A simple function is a measurable function s : X → C
taking only finitely many values.

Partitioning X into finitely many pieces corresponding to the values of a simple function s, we
may write simple functions as linear combinations of indicator functions of measurable sets. That
is, s =

∑n
j=1 cj1Ej for some numbers cj ∈ C and measurable sets Ej ∈ B. Given a measure µ on

(X,B), we define the integral of a simple function in the obvious way. To avoid issues with adding
and subtracting infinities, we will deal for now only with nonnegative functions.

Definition 3.2

Let (X,B, µ) be a measure space and s : X → [0,∞) a simple function. Write s =
∑n

j=1 cj1Ej

with cj ≥ 0 and Ej ∈ B. The integral of s with respect to µ is given by∫
X
s dµ =

n∑
j=1

cjµ(Ej).

Proposition 3.3

The integral of a nonnegative simple function is well-defined. That is, the value of the integral
of a simple function s does not depend on the representation of s as a linear combination of
indicator functions of measurable sets.

Proof. Suppose s =
∑n

j=1 cj1Ej . Let a1, . . . , am be the finite collection of values taken

by s, and let Ak = {s = ak} for k = 1, . . . ,m. Then the sets A1, . . . , Ak partition X, and
s =

∑m
k=1 ak1Ak

. We will show
∑n

j=1 cjµ(Ej) =
∑m

k=1 akµ(Ak).

Define a new collection of sets E′
J =

⋂
j∈J Ej \

⋃
i/∈J Ej for J ⊆ {1, . . . , n}. In other words,

x ∈ E′
J means that x ∈ Ej if and only if j ∈ J . This defines a partition of X. Note that the
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value of s on the set E′
J is c′J =

∑
j∈J cj . We can therefore relate the sets E′

J to the sets Ak by

Ak =
⊔

J⊆{1,...,n},c′J=ak

E′
J .

Then on the one hand,
m∑
k=1

akµ(Ak) =
m∑
k=1

ak
∑

J⊆{1,...,n},c′J=ak

µ(E′
J) =

∑
J⊆{1,...,n}

c′Jµ(E
′
J).

On the other hand,
n∑

j=1

cjµ(Ej) =
n∑

j=1

cj
∑

{j}⊆J⊆{1,...,n}

µ(E′
J) =

∑
J⊆{1,...,n}

∑
j∈J

cjµ(E
′
J) =

∑
J⊆{1,...,n}

c′Jµ(E
′
J).

This completes the proof. □

We used a particular representation of a simple function in the previous proof that will continue
to be convenient to work with. Say that

∑n
j=1 cj1Ej is the standard representation of a simple

function s if s =
∑n

j=1 cj1Ej , and the sets E1, . . . , En partition X (that is, they are pairwise

disjoint and their union is X).

Proposition 3.4

Let (X,B, µ) be a measure space, let s, t : X → [0,∞) be simple functions, and let c ∈ R,
c ≥ 0. Then

(1)
∫
X cs dµ = c ·

∫
X s dµ;

(2)
∫
X(s+ t) dµ =

∫
X s dµ+

∫
X t dµ;

(3) if s ≤ t, then
∫
X s dµ ≤

∫
X t dµ.

Proof. (1) Let s =
∑n

j=1 cj1Ej . Then cs =
∑n

j=1(ccj)1Ej , so∫
X
cs dµ =

n∑
j=1

(ccj)µ(Ej) = c ·
n∑

j=1

cjµ(Ej) = c ·
∫
X
s dµ.

For (2) and (3), it will be helpful to work with the standard representation, so let s =∑n
j=1 cj1Ej and t =

∑m
k=1 dk1Fk

be the standard representations. Define sets Aj,k = Ej ∩ Fk

for j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}. Then Ej =
⊔m

k=1Aj,k and Fk =
⊔n

j=1Aj,k.

(2) The function s+ t takes the value cj + dk on Aj,k, so∫
X
(s+t) dµ =

∑
j,k

(cj+dk)µ(Aj,k) =

n∑
j=1

cj

m∑
k=1

µ(Aj,k)︸ ︷︷ ︸
µ(Ej)

+

m∑
k=1

dk

n∑
j=1

µ(Aj,k)︸ ︷︷ ︸
µ(Fk)

=

∫
X
s dµ+

∫
X
t dµ.

(3) By assumption, if Aj,k ̸= ∅, then cj ≤ dk. Thus,∫
X
s dµ =

n∑
j=1

cjµ(Ej) =
∑
j,k

cjµ(Aj,k) ≤
∑
j,k

dkµ(Aj,k) =

m∑
k=1

dkµ(Fk) =

∫
X
t dµ.
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□

Definition 3.5

Let (X,B, µ) be a measure space, s : X → [0,∞) a simple function, and E ∈ B a measurable
set. The integral of s with respect to µ over E is given by∫

E
s dµ =

∫
X
s · 1E dµ.

Note that if s is simple, then s · 1E is also simple, so the above definition makes sense.

Proposition 3.6

Let (X,B, µ) be a measure space, and let s : X → [0,∞) be a simple function. Then

ν(E) =

∫
E
s dµ

defines a measure on (X,B).

Proof. Note that s · 1∅ = 0, so ν(∅) = 0. Suppose (En)n∈N is a pairwise disjoint family of
measurable sets, and let E =

⊔
n∈NEn. Write s =

∑m
j=1 aj1Aj . Then s · 1E =

∑m
j=1 aj1Aj∩E ,

so

ν(E) =
m∑
j=1

ajµ(Aj ∩ E) =
∑
j,n

ajµ(Aj ∩ En) =
∑
n∈N

∫
X
s · 1En dµ =

∑
n∈N

ν(En).

Note that the sum over n is an infinite sum so reordering requires some justification. Fortu-
nately, all of the values ajµ(Aj ∩ En) are nonnegative, so the sum can be computed in any
order without changing the value. □

2. Integration of Nonnegative Measurable Functions

We now want to extend the definition of the integral against a measure to all nonnegative
measurable functions. The next proposition shows that simple functions are a sufficiently general
class to approximate arbitrary measurable functions.

Proposition 3.7

Let (X,B) be a measurable space, and let f : X → [0,∞] be measurable. Then there exists a
sequence (sn)n∈N of simple functions such that 0 ≤ s1 ≤ s2 ≤ · · · ≤ f , and sn → f pointwise.

Proof. For n ∈ N, define

sn(x) =

{
a
2n , if a

2n ≤ f(x) < a+1
2n and a < n · 2n.

n, if f(x) ≥ n.

□

It is therefore reasonable to define the integral of an arbitrary nonnegative measurable function
as follows.
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Definition 3.8

Let (X,B, µ) be a measure space, and let f : X → [0,∞] be measurable. We define the
integral of f with respect to µ as∫

X
f dµ = sup

{∫
X
s dµ : s simple and 0 ≤ s ≤ f

}
.

Given a measurable set E ∈ B, the integral of f with respect to µ over E is defined by∫
E
f dµ =

∫
X
f · 1E dµ.

One may object at this point and suggest an alternative definition. Since f : X → [0,∞] can
be obtained as f = limn→∞ sn for an increasing sequence of simple functions 0 ≤ s1 ≤ s2 ≤ . . . ,
why not define

∫
X f dµ = limn→∞

∫
X sn dµ? As we will see shortly, this is in fact an equivalent

definition that is extremely useful for many applications. However, as a definition, it has two
serious defects: why should the limit exist? and why should the value be the same for all possible
approximations by simple functions? This is why we prefer Definition 3.8 above (and why this is
the standard definition across measure theory textbooks).

Proposition 3.9

Let (X,B, µ) be a measure space, and let f, g : X → [0,∞] be measurable. If f ≤ g, then∫
X
f dµ ≤

∫
X
g dµ.

Proof. It suffices to observe {s simple function : 0 ≤ s ≤ f} ⊆ {s simple function : 0 ≤ s ≤
g}. □

Theorem 3.10: Monotone Convergence Theorem

Let (fn)n∈N be a sequence of measurable functions 0 ≤ f1 ≤ f2 ≤ . . . , and let f = limn→∞ fn.
Then ∫

X
f dµ = lim

n→∞

∫
X
fn dµ.

Remark. Note that a consequence of the monotone convergence theorem is that
∫
X f dµ can

be computed by taking a sequence of simple functions 0 ≤ s1 ≤ s2 ≤ · · · → f and computing
limn→∞

∫
X sn dµ.

Proof of Monotone Convergence Theorem. First, f is a measurable function by
Proposition 2.11. By monotonicity of the integral (Proposition 3.9), the sequence

∫
X fn dµ is

increasing, so limn→∞
∫
X fn dµ = supn∈N

∫
X fn dµ ∈ [0,∞] exists as an extended real number.

Moreover, ∫
X
f dµ ≥ lim

n→∞

∫
X
fn dµ,

since the inequality holds for each n ∈ N. Therefore, it suffices to show∫
X
f dµ ≤ lim

n→∞

∫
X
fn dµ.
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If limn→∞
∫
X fn dµ = ∞, there is nothing to prove, so assume limn→∞

∫
X fn dµ < ∞.

Let c < 1. Let s : X → [0,∞) be a simple function, 0 ≤ s ≤ f . For n ∈ N, let En = {fn ≥
cs}. Then E1 ⊆ E2 ⊆ . . . and X =

⋃
n∈NEn. By Proposition 3.6, let ν : B → [0,∞] be the

measure ν(E) =
∫
E s dµ. We have

c ·
∫
X
s dµ = c · ν(X)

= c · lim
n→∞

ν(En) (continuity from below)

= lim
n→∞

c · ν(En) (Proposition 2.10)

= lim
n→∞

∫
En

cs dµ (Proposition 3.4)

≤ lim
n→∞

∫
X
fn dµ (monotonicity).

Taking a supremum over all such simple functions, we conclude

c ·
∫
X
f dµ ≤ lim

n→∞

∫
X
fn dµ.

Letting c → 1 yields the desired result. □

Proposition 3.11

Let (X,B, µ) be a measure space, and let f, g : X → [0,∞] be measurable functions. Let
c ∈ [0,∞).

(1)
∫
X cf dµ = c ·

∫
X f dµ.

(2)
∫
X(f + g) dµ =

∫
X f dµ+

∫
X g dµ.

Proof. (1) follows quickly from the definition of the integral and Proposition 3.4.
For (2), we will use the monotone convergence theorem. Let 0 ≤ s1 ≤ sn ≤ · · · ≤ f with

sn → f and 0 ≤ t1 ≤ t2 ≤ · · · ≤ g with tn → g. Then 0 ≤ s1 + t1 ≤ s2 + t2 ≤ · · · ≤ f + g and
sn + tn → f + g. Thus,∫

X
(f + g) dµ = lim

n→∞

∫
X
(sn + tn) dµ (MCT)

= lim
n→∞

∫
X
sn dµ+ lim

n→∞

∫
X
tn dµ (Proposition 3.4)

=

∫
X
f dµ+

∫
X
g dµ (MCT).

□

Theorem 3.12

Let (X,B, µ) be a measure space, and let (fn)n∈N be a sequence of nonnegative measurable
functions, fn : X → [0,∞]. Then∫

X

( ∞∑
n=1

fn

)
dµ =

∞∑
n=1

∫
X
fn dµ.
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Proof. We have∫
X

( ∞∑
n=1

fn

)
dµ =

∫
X

lim
N→∞

(
N∑

n=1

fn

)
dµ

= lim
N→∞

∫
X

(
N∑

n=1

fn

)
dµ (MCT)

= lim
N→∞

N∑
n=1

∫
X
fn dµ (additivity of the integral)

∞∑
n=1

∫
X
fn dµ.

□

Theorem 3.13: Fatou’s Lemma

Let (X,B, µ) be a measure space. Let (fn)n∈N be a sequence of measurable functions, fn :
X → [0,∞]. Then ∫

X
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
X
fn dµ.

Proof. Let f = lim infn→∞ fn. Define FN = infn≥N fn. Then 0 ≤ F1 ≤ F2 ≤ . . . and
FN → f . Therefore,∫

X
f dµ = lim

N→∞

∫
X
FN dµ (MCT)

≤ lim
N→∞

inf
n≥N

∫
X
fn dµ (monotonicity of the integral)

= lim inf
N→∞

∫
X
fn dµ.

□

3. Integration of Real and Complex-Valued Functions

The method for integrating real and complex-valued functions involves decomposing these func-
tions as linear combinations of nonnegative functions. An important observation is that such a
decomposition can be done in a measurable way.

Definition 3.14

Let X be a set and f : X → [−∞,∞]. The positive part f+ and negative part f− of f are
defined by

f+ = max{f, 0} and f− = max{−f, 0}.

Note that f = f+ − f− and |f | = f+ + f−. Moreover, if (X,B) is a measurable space and
f : X → [−∞,∞] is measurable, then f+ and f− are measurable by Proposition 2.11.
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Definition 3.15

Let (X,B, µ) be a measure space.

• An extended real-valued measurable function f : X → [−∞,∞] is integrable if∫
X
|f | dµ < ∞.

In this case, the integral of f is defined by∫
X
f dµ =

∫
X
f+ dµ−

∫
X
f− dµ.

• A complex-valued measurable function f : X → C is integrable if∫
X
|f | dµ < ∞,

and the integral of f is defined by∫
X
f dµ =

∫
X
Re (f) dµ+ i

∫
X
Im (f) dµ.

• Given a measurable set E ∈ B, a measurable function f taking extended real or
complex values is integrable over E if f ·1E is integrable, and the integral of f over
E is ∫

E
f dµ =

∫
X
f · 1E dµ.

Remark. By monotonicity of the integral (Proposition 3.9), if a function is integrable, then
it is also integrable over every measurable subset of X.

4. Integral Identities and Inequalities

Proposition 3.16: Triangle Inequality for the Integral

Suppose (X,B, µ) is a measure space and f : X → C is an integrable function. Then∣∣∣∣∫
X
f dµ

∣∣∣∣ ≤ ∫
X
|f | dµ.

Proof. First, suppose f is real-valued. Then by the triangle inequality and linearity,∣∣∣∣∫
X
f dµ

∣∣∣∣ = ∣∣∣∣∫
X
f+ dµ−

∫
X
f− dµ

∣∣∣∣ ≤ ∫
X
f+ dµ+

∫
X
f− dµ =

∫
X
|f | dµ.

Now suppose f is complex-valued. Let λ ∈ C with |λ| = 1 such that |
∫
X f dµ| = λ

∫
X f dµ.

Then ∣∣∣∣∫
X
f dµ

∣∣∣∣ = Re

(∫
X
λf dµ

)
=

∫
X
Re (λf) dµ ≤

∫
X
|Re (λf)| dµ ≤

∫
X
|f | dµ.

□
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Proposition 3.17: Linearity of the Integral

Let (X,B, µ) be a measure space. Let f, g : X → C be integrable functions, and let c ∈ C.
Then

(1) f + g is integrable, and
∫
X(f + g) dµ =

∫
X f dµ+

∫
X g dµ.

(2) cf is integrable, and
∫
X cf dµ = c

∫
X f dµ.

Proof. (1) First, by the triangle inequality, we have |f + g| ≤ |f |+ |g|. Therefore,∫
X
|f + g| dµ

(∗)
≤
∫
X
(|f |+ |g|) dµ (∗∗)

=

∫
X
|f | dµ+

∫
X
|g| dµ < ∞.

In step (∗), we have used monotonicity of the integral (Proposition 3.9), and in (∗∗), we have
used additivity (Proposition 3.11).

Decomposing f and g into their real and imaginary parts, it suffices to prove the identity∫
X(f + g) dµ =

∫
X f dµ +

∫
X g dµ for real-valued functions f and g. Let h = f + g. Then

h = h+ − h− = f+ − f− + g+ − g−. This can be rearranged to the identity h+ + f− + g− =
h− + f+ + g+. Then using additivity of the integral for nonnegative functions (Proposition
3.11), we have∫

X
h+ dµ+

∫
X
f− dµ+

∫
X
g− dµ =

∫
X
(h+ + f− + g−) dµ

=

∫
X
(h− + f+ + g+) dµ

=

∫
X
h− dµ+

∫
X
f+ dµ+

∫
X
g+ dµ.

(3.1)

Rearranging again,∫
X
(f + g) dµ =

∫
X
h+ dµ−

∫
X
h− dµ (Definition 3.15)

=

∫
X
f+ dµ−

∫
X
f− dµ+

∫
X
g+ dµ−

∫
X
g− dµ (by (3.1))

=

∫
X
f dµ+

∫
X
g dµ (Definition 3.15)

(2) Note that |cf | = |c||f |, so∫
X
|cf | dµ =

∫
X
|c||f | dµ (∗)

= |c|
∫
X
|f | dµ < ∞,

where (∗) follows from Proposition 3.11. Hence, cf is integrable.
For computing the integral of cf , we consider several different cases.

Case 1. c ≥ 0
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When f is nonnegative, we have ∫
X
cf dµ = c

∫
X
f dµ

by Proposition 3.11. The identity follows for a general complex-valued function f by
decomposing f =

(
Re (f)+ − Re (f)−

)
+ i
(
Im (f)+ − Im (f)−

)
.

Case 2. c = −1

For real-valued f : X → R, we use the identities (−f)+ = f− and (−f)− = f+ to obtain∫
X
(−f) dµ =

∫
X
f− dµ−

∫
X
f+ dµ = −

∫
X
f dµ.

Complex-valued functions can be handled by decomposing into real and imaginary parts.

Case 3. c = i

Noting that Re (if) = −Im (f) and Im (if) = Re (f), we have∫
X
if dµ =

∫
X
(−Im (f)) dµ+ i

∫
X
Re (f) dµ (Definition 3.15)

= −
∫
X
Im (f) dµ+ i

∫
X
Re (f) dµ (Case 2)

= i

(∫
X
Re (f) dµ+ i

∫
X
Im (f) dµ

)
= i

∫
X
f dµ (Definition 3.15)

Case 4. c ∈ R

Combine Case 1 and Case 2.

Case 5. c ∈ C
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Write c = a+ ib with a, b ∈ R. Then∫
X
cf dµ =

∫
X
(af + ibf) dµ

=

∫
X
af dµ+

∫
X
ibf dµ (by (1))

=

∫
X
af dµ+ i

∫
X
bf dµ (Case 3)

= a

∫
X
f dµ+ ib

∫
X
f dµ (Case 4)

= c

∫
X
f dµ.

□

Let (X,B, µ) be a measure space, and denote by L1(µ) the set of integrable functions. Propo-
sition 3.17 shows that L1(µ) is a (complex) vector space. Moreover, in the course of the proof, we
showed ∫

X
|cf | dµ = |c|

∫
X
|f | dµ and

∫
X
|f + g| dµ ≤

∫
X
|f | dµ+

∫
X
|g| dµ.

In other words, if we let

∥f∥1 =
∫
X
|f | dµ,

then ∥·∥1 defines a seminorm on the vector space of integrable functions on (X,B, µ).

Definition 3.18

Let V be a real or complex vector space. A function ∥·∥ : V → [0,∞) is a seminorm if it
satisfies:

• triangle inequality: ∥u+ v∥ ≤ ∥u∥ + ∥v∥ for all u, v ∈ V , and
• absolute homogeneity: ∥cv∥ = |c| ∥v∥ for all v ∈ V and all scalars c.

A seminorm is a norm if it satisfies the additional property

• positive definite: if v ∈ V and ∥v∥ = 0, then v = 0.

The seminorm ∥·∥1 on the space of integrable functions may not be a norm in general, but
a small modification will turn it into a norm. This will be discussed in greater detail later in
the course, in the context of so-called Lp spaces. One of the important ingredients is a deeper
understanding of null sets, which we will discuss now.

5. Sets of Measure Zero

Definition 3.19

Let (X,B, µ) be a measure space.

• A measurable set N ∈ B is a null set if µ(N) = 0.
• We say that a property holds almost everywhere if there exists a null set N ∈ B
such that the property holds for every point x ∈ X \N .

28



Remark. An easy consequence of countable additivity and monotonicity of measures is that
the family N of null sets forms a σ-ideal of B:

• ∅ ∈ N ;
• if A ∈ N and B ∈ B with B ⊆ A, then B ∈ N ; and
• if (Nn)n∈N is a countable family of null sets, then

⋃
n∈NNn ∈ N .

Notation. The phrases “almost everywhere” or “almost every” are often abbreviated by a.e.
or µ-a.e. if the measure needs to be specified. In a statement of the form “Property P holds
a.e.,” we interpret a.e. as “almost everywhere.” For a statement of the form “Property P
holds for a.e. x ∈ X,” we read a.e. as “almost every,” and the meaning is the same as in the
previous example statement.

Null sets naturally arise and play an important role in integration theory. Some examples are
provided by the next three propositions.

Proposition 3.20

Let (X,B, µ) be a measure space. Suppose f : X → [−∞,∞] is an integrable function. Then
f(x) ∈ R for µ-a.e. x ∈ X.

Proof. Let N = {x ∈ R : |f(x)| = ∞}. We want to show that N is a null set. By
monotonicity of the integral (Proposition 3.9),∫

X
|f | dµ ≥

∫
N
|f | dµ = ∞ · µ(N).

On the other hand, by integrability of f ,∫
X
|f | dµ < ∞.

Thus, ∞ · µ(N) < ∞, so µ(N) = 0. □

Proposition 3.21

Let (X,B, µ) be a measure space, and let f, g : X → C be measurable functions. Suppose
f = g a.e. Then f is integrable if and only if g is integrable. Moreover, if f and g are
integrable, then ∫

X
f dµ =

∫
X
g dµ.

Proof. Let N = {x ∈ X : f(x) ̸= g(x)}. By assumption, N is a null set.

Step 1. Integrability
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Suppose f is integrable. Then∫
X
|g| dµ =

∫
X\N

|f | dµ+

∫
N
|g| dµ (linearity of the integral)

≤
∫
X
|f | dµ+∞ · µ(N)︸ ︷︷ ︸

0

(monotonicity of the integral)

=

∫
X
|f | dµ < ∞,

so g is integrable. Reversing the roles of f and g proves the converse.

Step 2. Integral

Assume f and g are integrable. Then∣∣∣∣∫
X
g dµ−

∫
X
f dµ

∣∣∣∣ = ∣∣∣∣∫
X
(g − f) dµ

∣∣∣∣ (linearity of the integral)

≤
∫
X
|g − f | dµ (triangle inequality for the integral)

=

∫
X\N

0 dµ+

∫
N
|g − f | dµ (linearity of the integral)

≤ 0 · µ(X \N) +∞ · µ(N) = 0.

□

Proposition 3.22

Let (X,B, µ) be a measure space, and let f : X → [0,∞] be a measurable function. Then∫
X f dµ = 0 if and only if f = 0 a.e.

Proof. If f = 0 a.e., then by Proposition 3.21, f is integrable and∫
X
f dµ =

∫
X
0 dµ = 0 · µ(X) = 0.

Conversely, suppose
∫
X f dµ = 0. Then by Markov’s inequality (Exercise 3.2),

µ ({f > c}) ≤ 1

c

∫
X
f dµ = 0

for every c > 0. Therefore, by continuity of µ from below,

µ ({f ̸= 0}) = µ

(⋃
n∈N

{
f >

1

n

})
= lim

n→∞
µ

({
f >

1

n

})
= 0.

That is, f = 0 a.e. □

The examples above (especially Proposition 3.21) show that null sets are negligible from the
point of view of integration, and we can very often ignore modifications that happen on null sets.
There is one subtle issue that requires care, however: in general, a subset of a null set may not be
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measurable and non-measurable modifications on null sets may create issues. For this reason, it is
often convenient to work with complete measure spaces, as defined below.

Definition 3.23

A measure space (X,B, µ) is complete if every subset of every null set is measurable. That
is, if E ⊆ X and there exists N ∈ B with E ⊆ N and µ(N) = 0, then E ∈ B.

The following proposition is a useful tool for passing to complete measure spaces.

Proposition 3.24

Let (X,B, µ) be a measure space. Let N = {N ∈ B : µ(N) = 0} be the σ-ideal of µ-null
sets. Then the family B = {E ∪ F : E ∈ B, F ⊆ N ∈ N} is a σ-algebra, and there is a unique
extension µ of µ to B.

Proof. Exercise 3.9. □

Definition 3.25

The completion of a measure space (X,B, µ) is the space (X,B, µ), where B and µ are as
defined in Proposition 3.24.

6. The Dominated Convergence Theorem

We have already seen two fundamental convergence theorems for integration against a measure:
the monotone convergence theorem and Fatou’s lemma. We are nearly ready to state another
fundamental result about integration: the dominated convergence theorem. First, we need to
introduce the two notions of convergence that will be related by the dominated convergence theorem.

Definition 3.26

Let (X,B, µ) be a measure space.

• We say that a sequence (fn)n∈N of functions on X converges almost everywhere to
a function f if limn→∞ fn(x) = f(x) for almost every x ∈ X.

• A sequence (fn)n∈N of integrable functions converges in L1 to f ∈ L1(µ) if

∥fn − f∥1 =
∫
X
|fn − f | dµ → 0

in R as n → ∞.

The dominated convergence theorem says that any sequence that converges almost everywhere
and is “L1-dominated” will converge in L1. The precise mathematical formulation is as follows:

Theorem 3.27: Dominated Convergence Theorem

Let (X,B, µ) be a measure space. Let (fn)n∈N be a sequence of integrable functions, fn :
X → C, and let f : X → C be measurable. Suppose

(1) fn → f a.e., and
(2) there is an integrable function g : X → [0,∞) such that supn∈N |fn| ≤ g a.e.
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Then f is integrable and fn → f in L1(µ). In particular,∫
X
f dµ = lim

n→∞

∫
X
fn dµ.

Proof. First, |f | ≤ |g| a.e., so f is integrable.
Observe:∫

X
2g dµ− lim sup

n→∞

∫
X
|f − fn| dµ = lim inf

n→∞

∫
X
(2g − |f − fn|) dµ

≥
∫
X
lim inf
n→∞

(2g − |f − fn|) dµ (Fatou’s lemma)

=

∫
X
2g dµ (fn → f)

Rearranging, we conclude

lim sup
n→∞

∫
X
|f − fn| dµ ≤ 0.

Using the triangle inequality for the integral,∣∣∣∣∫
X
f dµ−

∫
X
fn dµ

∣∣∣∣ ≤ ∫
X
|f − fn| dµ → 0,

so ∫
X
f dµ = lim

n→∞

∫
X
fn dµ.

□

The assumption that the sequence (fn)n∈N is “dominated” by an integrable function g is a
necessary assumption to avoid “escape of mass to infinity,” as the following example demonstrates.

Example 3.28

Let X = Z, B = P(Z), and let µ be the counting measure. Let fn = 1{n}. Then fn(x) → 0
for every x ∈ X. However, ∫

X
fn dµ = 1

for every n ∈ N, while ∫
X

lim
n→∞

fn dµ =

∫
X
0 dµ = 0 ̸= 1.

Additional Reading

For other presentations of integration on abstract measures spaces, see [1, Section 2.1–2.3], [4,
Chapter 1], [5, Sections 2.1 and 6.2], and/or [6, Section 1.3 and Subsection 1.4.4]. The development
of integration in the books of Folland [1] and Rudin [4] is very similar to the presentation in these
notes. By contrast, Stein and Shakarchi [5] and Tao [6] first develop integration in the special
case of the Lebesgue measure before moving to abstract spaces. The book of Stein and Shakarchi
[5] also proves the fundamental convergence theorems in a different order, starting with a special
case of the dominated convergence theorem known as the bounded convergence theorem, and then
deducing Fatou’s lemma, the monotone convergence theorem, and the general case of the dominated
convergence theorem.
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There is a very nice book of Oxtoby [3] that develops useful analogies between measure spaces
and topological spaces and includes a discussion of null sets in relation to a σ-ideal of “topologically
negligible” sets called meager sets or sets of first category.

Exercises

3.1 Prove the Borel–Cantelli lemma: if (An)n∈N is a family of measurable subsets of a probability
space (X,B, µ) and

∑
n∈N µ(An) < ∞, then

µ ({x ∈ X : x ∈ An for infinitely many n ∈ N}) = 0.

3.2 Let (X,B, µ) be a measure space and f a measurable function. Prove Markov’s inequality: for
any c > 0,

µ ({|f | ≥ c}) ≤ 1

c

∫
{|f |>c}

|f | dµ ≤ 1

c

∫
X
|f | dµ.

3.3 Let (X,B, µ) and (Y, C, ν) be measure space, and let T : X → Y be a measurable function.
Define Tµ : C → [0,∞] by (Tµ)(A) = µ(T−1(A)). Prove Tµ = ν if and only if for every integrable
function f : Y → C, ∫

Y
f dν =

∫
X
f ◦ T dµ.

3.4 Let (X,B, µ) be a probability space. Let (An)n∈N be a family of measurable sets with a =

infn∈N µ(An) > 0. Show that there is a set E ⊆ N such that d(E) := lim supN→∞
|E∩{1,...,N}|

N ≥ a,

and for any finite set F ⊆ E, F ̸= ∅, one has µ
(⋂

n∈F An

)
> 0 by proving the following intermediate

steps:

(a) Justify that we can assume without loss of generality that
⋂

n∈F An ̸= ∅ if and only if µ
(⋂

n∈F An

)
>

0 for every finite set F ⊆ N. It may help to define the countable set

F =

{
F ⊆ N : |F | < ∞,

⋂
n∈F

An ̸= ∅, and µ

(⋂
n∈F

An

)
= 0

}
.

(b) Prove ∫
X
lim sup
N→∞

1

N

N∑
n=1

1An dµ ≥ a.

(c) Define E = {n ∈ N : x ∈ An} for a suitable choice of x ∈ X.

3.5 Let (X,B, µ) be a measure space. Suppose f : X → [0,∞] is a measurable function. Define
ν : B → [0,∞] by

ν(E) =

∫
E
f dµ.

Prove that ν is a measure.

3.6 Let (X,B, µ) be a measure space, and let f : X → C be an integrable function. Prove that
for any ε > 0, there exists δ > 0 with the following property: if E ∈ B and µ(E) < δ, then∣∣∫

E f dµ
∣∣ < ε.

3.7 Let (X,B, µ) be a measure space, and let f, g : X → C be integrable functions. Show that
f = 0 a.e. if and only if

∫
E f dµ for every E ∈ B.

3.8 Show that a measure space (X,B, µ) is complete if and only if it satisfies the following property:
for functions f, g : X → C, if f is measurable and f = g a.e., then g is measurable.

3.9 Prove Proposition 3.24.
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3.10 Show that simple functions are dense in L1. That is, if (X,B, µ) is a measure space and
f ∈ L1(µ), then for every ε > 0, there exists a simple function s : X → C such that ∥f − s∥1 < ε.

3.11 Let (X,B, µ) be a measure space and E ∈ B. If (En)n∈N is a sequence of measurable sets and
E =

⋃
n∈NEn, prove that for every integrable function f ∈ L1(µ),

lim
n→∞

∫
En

f dµ =

∫
E
f dµ.

State and prove an analogous result for decreasing sequences.

3.12 Prove

lim
n→∞

(
1 +

x

n

)n
=
∑
k≥0

xk

k!
.
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